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1 Background

Recent experiments indicate that frictionally heated grit can act as effective
hot spots for the ignition of PBX 9501 (Parker et al. (2013)). The most
common mode for hot spot formation is when a piece of grit is dragged by
the explosive across a high melting point surface, such as steel. This leads
to a hot spot with a temperature of the melting point of the surface. For
high melting point surfaces this can be hot enough to lead to ignition. It is
believed that an easy way to mitigate this is to use surfaces with low melt-
ing points, which means the hot spots formed cannot become hot enough to
ignite the explosive during the duration of the impact (Bowden and Gurton
(1948)). However, when surfaces have a similar hardness to the PBX (such
as many plastics), hot spots of sufficient temperature for ignition can still be
formed by the collision of two grit particles, one being dragged by the PBX
with the other being stationary on the surface.

In order to mitigate the probability of ignition it is desirable to know how
clean the work surfaces need to be in order to minimize the acceptable risk
of an event. Two cases need to be considered: first, what is probability that
a dropped piece of PBX will contact one or more grit particles? This will
lead to an estimate of how ”clean” a surface needs to be when working with
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unmitigated, high-melting point surfaces. Second, what is the probability
that a dropped piece of PBX will lead to a collision between two or more grit
particles? This will give an estimate how clean a surface needs to be when
working with low melting point surfaces.

2 Initial Assumptions

In order to obtain a workable form for the probabilities of interest several
assumptions must be made. The first of the assumptions is that the prob-
ability of the location of the grit particles is statistically independent from
each other. In other words, that the density of the grit is low enough that
there will be no overlap of the particles. This assumption allows us to ap-
proximate the distribution of grit particles as a Poisson distribution (Yates
and Goodman (2005)),

f(k, λ) =
λk

k!
exp(−λ), (1)

where k would be the number of particles in the area of interest and λ = ρA,
where ρ is the average particle density of the surface and A is the area of inter-
est. For example, this states that the probability that there are two particles
in some area A with an average particle density, ρ, would be λ2

2
exp(−λ).

For this case, the area, A, will be the total area swept out by the contacting
explosive moving over the impacted surface, Fig.(1) and Fig.(3). This area
will depend on several variables, including drop height and the angle of im-
pact. This gives the following expression for the probability that a dropped
piece of PBX will impact one or more grit particles:

Pa(A, ρ) =
∞
∑

k=1

λk

k!
e−λ. (2)

Since the sum of Pa over all k must be unity, Pa can be written in the more
compact form:

Pa(A, ρ) = 1− f(0, λ) = 1− e−λ. (3)

Where, as before, λ = ρA. Figure (2) shows the a plot of Pa versus grit
density for a range of contact areas.
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Figure 1: Showing the total area, A, of the swept out by the contacting
explosive
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3 Grit-on-Grit

The second calculation determines the probability that a grit-on-grit collision
occurs, Pc, and builds on the first calculation. Starting with the assumptions
from before, the probability of having two or more particles in the impact
area (less than two particles and no collision can occur) can be written as:

P2a(A, ρ) =
∞
∑

k=2

λk

k!
e−λ. (4)

If there are k particles in the impact area, then, assuming each particles
in the area has an equal probability of moving, p, the probability of having
j out of k particles moving is:

(

k

j

)

pj (1− p)k−j
. (5)

The probability, p, depends on the material characteristics and other impact
parameters and it’s exact determination is outside of the scope of this con-
versation. However, it is possible to estimate the probability of moving by
considering the material relative hardness, if the substrate is much harder
than the PBX then all of the particles will move and if the the substrate has
a similar hardness to the PBX then the probability of moving will be ≈ 0.5.
Also, as will be shown later, for 0.1 < p < 0.9, the probability of having a
grit-grit collision is not strongly influenced by p. So the probability of one
or more grit particles moving can be written as:

PM =
∞
∑

k=2

k−1
∑

j=1

λk

k!
e−λ

(

k

j

)

pj(1− p)k−j. (6)

The bounds in the second sum arise from the fact that in order for a collision
to occur there needs to be at least one moving particle or one stationary
particle. In the bounding cases, that all the particles are stationary or all
the particles are in motion are included then the bounds would be j = 0, k
respectively.

Now to finish the derivation, the probability that a collision occurs, if
there are k particles in an area A, with j particles moving and k−j stationary
particles, needs to be calculated. To do so several approximations need to be
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made. First, it is assumed that all particles have the same size, i.e. all of the
particles have the same radius. This allows the moving particles to be treated
as having a radius of 2r while the stationary particles are treated as point
particles. This means if a particle moves some distance x, then it sweeps out
the area 4rx, where the hemi-spherical ends can be neglected. Therefore,
the probability that any one stationary particle in the contact area, A, is
also in the area swept out by the moving particle is 4rx

A
, since the stationary

particles are equally likely to be anywhere in the area A. The probability
that i particles out of k− j are in the area swept out by the moving particle
is given as,

(

k − j

i

)(

4rx

A

)i(

1−
4rx

A

)k−j−i

. (7)

So the probability that one or more particles are in the area swept out is,

1−

(

1−
4rx

A

)k−j

. (8)

The next approximation has to do with the distance the particles can
move. As the explosive impacts the surface, the initial area contacting the
surface can be approximated as a circle of radius R, and it is assumed that
this contact area does not change as the explosive slides over surface; in other
words the radius of the circle does not change. The center of the circle moves
some distance L as it slides over the surface, which gives the total area of
contact,

Atot = 2RL+ πR2. (9)

This means that any moving particle trapped in the sliding explosive can
move a maximum distance of L. Therefore, any moving grit particle can be
displaced any distance between zero and L, and it is approximated that it
is equally likely it will start moving anywhere within this constraint. Now
since the particles are assumed to be statistically independent, it can be
approximated that each moving grit particle starts moving in the rectangle of
area Á = LW (see Fig.(3)) whereW = 2R and the particle is equally likely to
start moving anywhere in this rectangle. This means that the probability that
a moving grit particle starts moving at x can be written as dx

L
. Combining

this with Eq. (8) and integrating over x leads to the probability, Pc, that a
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Figure 3: Illustrating the area swept out by an impacting circle. The particles
are shown in this diagram with a Poisson distribution.
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single moving particle collides with one or more stationary particles:

Pc =

∫ L

0

(

1−

(

1−
4r

A
x

)k−j
)

dx

L
. (10)

The integral in Eq.(10) can be solved via substitution to give the following
result for Pc,

Pc = 1 +
A

4rL(k − j + 1)

{

(

1−
4rL

A

)k−j+1

− 1

}

. (11)

Since each moving particle is assumed to be independent the probability of
each of the i moving particles out of j having at least one collision is,

(

j

i

)

P i
c (1− Pc)

j−i
, (12)

and the probability probability of j moving particles having one or more
collisions is,

1− (1− Pc)
j
. (13)

Now combining Eq.(6) and Eq.(13) such that each term in Eq.(6) is weighted
by Eq.(13) gives the total probability, Ptot that a grit-grit collision occurs,

Ptot(A,L, ρ, p, r) =
∞
∑

k=2

k−1
∑

j=1

λk

k!
e−λ

(

k

j

)

pj (1− p)k−j
(

1− (1− Pc)
j
)

,

(14)
or, in its full form:

Ptot(A,L, ρ, p, r) =

∞
∑

k=2

k−1
∑

j=1

λk

k!
e−λ

(

k

j

)

pj (1− p)k−j



1−

{

A

4rL (k − j + 1)

(

1−

(

1−
4rL

A

)k−j+1
)}j



 .

(15)
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4 Estimation and Calibration of the Impact

Area

In this section we derive an approximation for the area and skid length for an
impacting hemisphere of 9501. Both the area and skid length are dependent
on the drop height of the hemisphere and will be calibrated from experiment.

The expression for the contact area is determined using a combination
of theory and experiment. The skid experiment used a rigid-arm pendulum
(See Fig.(4)) to deliver HE charges onto an impact surface with good accu-
racy and reproducibility. The HE charges used were live-pole hemispheres,
which are a two part system consisting of a hemisphere of Delrin with an
insert of PBX 9501 which impacts with the target. See (Fig. (5)).

This hemi is delivered onto the impact surface mounted on a rigid target
frame by the pendulum. For the initial set of experiments the angle between
the HE charge and the target was set at 45o. The orientation of the impact
surface and target frame allows for optical access on the normal axis, allow-
ing the contact surface of transparent targets to be observed. This allowed
the contact area to be measured as the impact occurred by the use of high-
speed video cameras (see Fig.(6)). For a more detailed explanation of the
experimental setup please see (Parker et al. (2013)).

In order to apply the proceeding derivation to the case of grit mediated
ignition in an explosive, we must obtain an expression for the area, A and
slide length, L, using reasonable approximations. While the final form for
the time dependent area of the impacting PBX is flawed, it is shown that
the maximum impact area fits the experimental data (see Fig. (8)) in a
reasonable fashion. This allows us to find a usable form for A and L for use
in Eq. (15) which depends on both velocity (or equivalently drop height) and
impact angle which allows us to explore the effect of both these parameters.
For the derivation several approximations are made, including the first and
most problematic, that the forces on the hemisphere are high enough that
the material response is in the plastic regime. As such, that the stress can
be approximated as a constant. A discussion on why this approximation
fails but leads to valuable physical insights will occur after the outline of the
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Figure 4: Overview of the pendulum used for skid testing

derivation. This leads to the expression,

F

A
= −α, (16)

which states that the total force of the impacting hemisphere is proportional
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Figure 5: Showing delrin holder with PBX 9501 insert.

Figure 6: Showing setup of target with optical path

to the area in contact with the substrate. When the hemisphere impacts
the target, the impacting surface of the hemisphere starts to compress, we
define the amount of compression from the hemisphere’s initial equilibrium
point to be the coordinate x. As the hemisphere compresses, the circular
area in contact with the substrate is dependent on how far the hemisphere
is compressed, or equivalently, x. It is simple to derive an expression for
the area of contact which depends on x and the radius of curvature, R0, of
the hemisphere from a geometric argument (See Fig. (7)). This leads to an
expression for A(x) as,

A(x) = 2πR0x− πx2. (17)
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Figure 7: Two dimensional representation showing the the crucial geom-
etry for determining the contact area with respect to compression of the
hemisphere. The radius of the contact area, r, is determined using the
Pythagorean theorem, while x is the compression coordinate used in the
resulting differential equation.
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We can then use the equation for the area from Eq. (16), which leads to,

F = −αA(x) = −απ
(

2R0x− x2
)

, (18)

which gives the differential equation with respect to our coordinate, x, as,

d2x

dt2
= −

απ

M

(

2R0x− x2
)

, (19)

where M is the mass of the hemi. Since x is very small compared to the
radius of curvature, R0, the x2 term in the proceeding differential can be
dropped, which leads to following approximation,

d2x

dt2
≈ −

α2πR0

M
x = −ω2x. (20)

Readers will recognize this as the equation of motion for a harmonic oscillator,

where ω =
√

α2πR0

M
. The initial conditions for the system are then x0 = 0

and p0 = Mv0, the initial displacement and momentum respectively, which
leads to the time dependent equation for A as,

A(t) = 2πR0x(t)− πx(t)2 ≈ 2πR0x(t) =
2πR0v0

ω
sin(ωt). (21)

Due to the complex physics occurring in an actual drop and the rather
gross level of approximations made, including the aforementioned plastic de-
formation, as well as the assumption that the pressure is constant throughout
the entire impact area, it is not possible to fit Eq.(21) to the experimental
time dependent area. While Eq.(21) fails to adequately describe the time
evolution of the contact area, it does capture one useful characteristic, that
the maximum area, Amax, scales linearly with the impact velocity. It is
straightforward to obtain the equation of motion for the elastic limit rather
than plastic limit, in a similar manner in which Eq.(19) was obtained. The
derivation of this equation of motion is left as an exercise for the reader.
A numerical exploration showed that the maximum area scales as ≈ v0.6660

rather than scaling linearly as in the plastic case, suggesting that while the
simplified model does not capture the correct time evolution but the plastic
deformation is nevertheless the dominant process.
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Amax =
2πR0v0

ω
(22)

Eq.(22) can then be fit to the empirically determined maximum area data
versus impact velocity using ω as the fitting parameter (which is equivalent
to fitting α). This fit was done using the measured radius of curvature of
the PBX 9501 as R0 = 0.127 m and a total mass, M = 6.8 kg. The fit gives
a value of ω = 7860 s−1 which is equivalent to α = 0.53 MPa. This value
for α is approximately an order of magnitude lower than the yield strength
of PBX 9501 (Dobratz (1985)). This seems to imply that the yield strength
of the PBX is never reached, therefore the deformation should be elastic not
plastic but the measured ω is the averaged value for the entire contact area.
This fit gives an expression for the maximum area (See Fig.(8)) which can
be used in determining the total area for use in Eq.(15). This area is slightly
underestimated due to the frame rate of the camera used to collect the area
data, but with the appropriate time dependent expression for the area, the
maximum area could be better fit. However, that is currently beyond the
scope of this report.

Next, the length of the skid needs to calculated. Since the experimental
evidence indicates that the time of the bounce (tb ∼ 1ms) is largely inde-
pendent of the drop height, the length of the skid can be well approximated
as the bounce time multiplied by the impact velocity in the direction of the
skid. This allows us to write an expression for the total area, Atot and length,

Atot = sinθ
2πR0v0

ω
+ 2tbcos(θ)v

3

2

0

√

2R0sin(θ)

ω

L = tbv0cos(θ)

(23)

Where θ is the angle of the incident impact.

5 Results

The final form for the total probability of a grit-on-grit collision, Eq.(15),
depends on five variables; A (the area), L (the distance the explosives slides
over the surface), ρ (the average density of grit particles on the surface), p
(the probability the grit particle moves) and r (the radius of the grit particles,
assumed to be equal for all particles). Of these, the area, A and the length L

are dependent on the drop height and angle of impact and Eq.(23) will be used
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Figure 9: A plot showing the dependence of Ptot on p for a range of values
for p

as a functional form for these quantities. The coverage density and radius of
grit particles, ρ and r, respectively, are taken to be the independent variables
for this analysis, since these give a measure of the ”cleanliness” needed to
minimize the event of a reaction. The other variable, p, the probability of
a grit particle moving does not strongly affect the overall probability of a
collision except in cases of low (<0.1) and high (>0.9) probabilities of the
grit moving. This is illustrated in Fig.(9) and Fig.(10).

Considering the experimental setup described above, with θ = 45o , we
can rewrite Eq.(23) with respect to drop height, since v0 =

√
2gh, as

Atot =
2πR0

√
gh

ω
+ 2tb (gh)

3

4

√

2R0

ω

L = tb
√

gh.

(24)

Where h is the drop height and g is the acceleration due to gravity. Using
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Figure 10: A log plot showing the dependence of Ptot on p for a range of
values for p
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Figure 11: A plot showing the dependence of the probability of impacting
one or particles, Ptot on drop height and coverage density, ρ. The fixed
parameters were particle size, r = 250 µm and impact angle, θ = 45o

.

the measured parameters R0 = 0.127 m and tb = 1 ms with the fit parameter
ω = 7860sec−1, this allows us to calculate the probability that one or more
particles of grit will be within the impact area, depending on drop height
and coverage density (See Fig.(11)). We can also calculate the probability of
grit-grit collision with the preceding parameters. For this case we will pick
the probability of moving to be p = 0.50, which is representative of the target
surface having a similar hardness to PBX 9501. See Fig.(12)).

We can explore the effect of changing the impact angle on both the prob-
ability that one or more particles are in the impact area (Fig.(13)) and the
probability of a grit-grit interaction (Fig.(14)). For both cases a 1.83 m (6
ft.) drop was used, with a particle radius of 250 µm. The probability of mov-
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Figure 12: A plot showing the probability of grit-grit interaction depending
on drop height and coverage density, ρ. The fixed parameters were particle
size, r = 250µm, probability of moving, p = 0.50, and impact angle, θ = 45o
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Figure 13: A plot showing the probability of impacting one or more particle,
depending on impact angle, θ, and grit density, ρ. The fixed parameters were
particle size, r = 250 µm and dropped from a height of 1.83 m (6 ft.)

ing was considered to be p = 0.5 for the grit-grit collision. Fig.(13) does not
show much difference in the probability of impacting one or more particles
with impact angle, this is expected since this probability depends on only the
area and particle density. However, we expect the shallower impact angles
to be more likely candidates for ignition since the drag length, L, is longer
for these angles, providing more time for frictional heating to occur. Fig.(14)
shows more complex behavior since the drag length strongly influences the
probability of a grit-grit collision. It appears the worst case angle is ∼ 45o

with the probability of a collision falling off steeply with angles over 45o.
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6 Conclusion

In order to determine the cleanliness needed to mitigate the dangers of grit
initiated ignition of explosives, two statistical quantities were derived. The
first expression, Eq.(3), determines the probability that one or more particles
are within the impact zone of the impacting explosive. This probability
depends on the area, A, (which depends on the drop height and angle of
impact) and the coverage density, ρ, of the grit particles on the target surface.
The second quantity, Eq.(15), finds the probability that there will be a grit-
grit collision, another mechanism which can lead to ignition. This expression
depends on the area, A, swept out by the impacting explosive, the length of
the skid, L, the density of grit particles, ρ, the radius of the grit particles, r,
and the probability, p, that a particle will move with the impacting explosive
or will remain stationary. Also, an expression for the maximum contact area
is derived and fit to experimental data. This area depends on drop height, h,
angle of impact, θ, the radius of curvature, R, and the experimentally fit ω.
This allows one to easily calculate the above probabilities dependent on both
drop height and coverage density, giving a measure needed for determining
cleanliness standards and controls for drop height.

7 Notes

For a Python script to calculate the probabilities of interest please email Eric
Heatwole at heatwole@lanl.gov or call (505)665-7897.
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